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THEORIES WHOSE RESPLENDENT MODELS 
ARE HOMOGENEOUS 

BY 

JULIA F. KNIGHT' 

ABSTRACT 

Buechler proved that if T satisfies certain conditions, then all resplendent 
models of T are homogeneous. Here the theories whose resplendent models are 
all homogeneous are characterized as satisfying a pair of conditions (weaker 
than Buechler's). It follows from the characterization that if all resplendent 
models of T in some uncountable power are homogeneous, then all resplendent 
models of T are homogeneous. 

§1. Introduction 

A s t ruc ture  21 is said to be resplendent if for  each sen tence  O(a, R), involving a 

new re la t ion  symbol  R and some  symbols  f rom DC(92), if O(a, R) is cons i s ten t  

with DC(21), then  O(a, R) is sat isf ied in an expans ion  of  92. A s t ruc ture  92 is said 

to be homogeneous if for  any  subse t  X of 21, if ~ < ~ ,  then  any e l e m e n t a r y  

m o n o m o r p h i s m  f rom X into  21 can be e x t e n d e d  to an a u t o m o r p h i s m  of 92. The  

s t ruc ture  21 is said to be l%-homogeneous if eve ry  finite e l e m e n t a r y  m o n o m o r -  

phism ex tends  to an automorphism. 
Excep t  in the  last sec t ion  of the  pape r ,  all l anguages  are  a s sumed  to be  finite. 

U n d e r  this a s sumpt ion ,  the  fo l lowing th ree  s t a t emen t s  a re  t rue  (none of t hem 

holds  wi thou t  the  assumpt ion) :  

LEMMA 1.1. Every resplendent structure is no-homogeneous. 
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LEMMA 1.2. A countable structure is resplendent just in case it is recursively 
saturated. 

LEMMA 1.3. A structure 92 (of arbitrary cardinality) is resplendent iff for any 

r.e. theory T (in a finite language), if T is consistent with DC(92), then 92 can be 
expanded to a model of 7". 

Buechler [1] proved that if T satisfies certain conditions then all of the 

resplendent models of T are homogeneous. A striking consequence of this is the 

fact that if T has just one resplendent model in some uncountable power, then it 

has just one resplendent model in each infinite power. 

The present paper gives a set of two conditions - -  one on definability of types 

and one on ubiquity of indiscernibles - -  characterizing the theories whose 

resplendent models are all homogeneous. It follows from this characterization 

that if all resplendent models of T in some uncountable power are homogene- 

ous, then all of the resplendent models of T are homogeneous. 

The proof that the two conditions are sufficient uses ideas from Buechler, of 

course. However,  some of the special consequences of to-stability that Buechler 

used are not available here. In particular, where Buechler used the existence of 

prime models over arbitrary sets and the fact that a type over an arbitrary set is 

the unique non-forking extension of some stationary type over a finite subset, 

new machinery is called for. Forking is not mentioned at all. 

Some notation and terminology will be mentioned here. If x, y are finite 

sequences, then xny denotes the concatenation; i.e., the results of adding the 

terms of y to the end of x. If a is a finite sequence from a structure 92 and X _C 92, 

then tp(a,X, 92) denotes the type realized by a over X in 92. The notation 

tp (a, 92) may be used instead of tp (a, Q, 92). The set of all complete 1-types over 

X is denoted by Sx. If F E Sx and Y C_ X, then F r Y denotes the set of formulas 

~o(x, v) in F having parameters x in Y. So far, everything is standard, but the 

next definition is new. 

Let 92 be a structure, with X C_ 92 and F ~ Sx. Let e E to, and let e be a finite 

sequence from 92. Let 92' be an expansion of 92. Then F is said to be determined 
by e and c in 92' if for all finite x ~ X, the characteristic function of the restricted 

type Fx is computed by the e th recursive procedure,  using information about 

tp(xnc,  92'); i.e., XrI~ = q~(~n,.~,). 

If X C 92 and F E Sx, then F is said to be finitely satisfied in 92 if F I Y is 

satisfied on 92 for each finite Y C_ X. The next lemma gives an alternate definition 

of homogeneity that is often more useful than the original one (see [3]). 

LEMMA 1.4. A structure 92 is homogeneous if[ 92 is no-homogeneous and for 
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any X C 92 and any F @ S×, if .~ < ~ and F is finitely satisfied in 92, then F is 

satisfied in 92. 

Let T be a stable theory, with 9/ a model of T. Let X C 92, and let I be an 

infinite set of indiscernibles in 92. The average type of I over X, denoted by 

Av(L X), is the set of formulas ~(x, v) such that 92 ~ ~o(x, i) for infinitely many 

i ~ L (This type is consistent, by stability.) 

Now, here are the two conditions: 

(1) Recursioe Definability of Types 
Let 92 be a countable recursively saturated model of T, with X_C 92 and 

F E Sx. If F is finitely satisfied in 92, then F is determined by some e E to and 

c~92 .  

(2) Ubiquity of Indiscernibles 
Let 92 be a countable recursively saturated model of T, with X C 92 and 

F E Sx. If F is finitely satisfied in 92, then either F is realized in 92 or else there is 

an infinite set of indiscernibles I C_ 92 such that F = Av(/, X). 

The Definability Condition, considered just by itself, turns out to be very 

strong. If a theory T satisfies Condition 1, then it must be superstable, and if, in 

addition to satisfying Condition 1, T has only countably many types, then it must 

be to-stable. There are theories that satisfy Condition 1 but are not to-stable. In 

fact, Nadel and Stavi observed that for the theory of (Z, + ,1) ,  which has 

uncou'ntably many types, all resplendent models are homogeneous, so both 

conditions are satisfied. 
Section 2 contains some basic lemmas extending the two conditions to 

uncountable models. Section 3 contains the main result. Section 4 gives a 

definition of resplendence appropriate for infinite languages. This definition is 

stronger than the standard one. If this definition is adopted, then Lemmas 1.1, 

1.2, and 1.3 hold for structures whose language is infinite. In addition, Buechler's 

results extend to theories in an infinite language, and so does the characteriza- 

tion of theories whose resplendent models are homogenous. 

Section 4 contains a couple of examples. The first is a countable structure 92 

that is resplendent under the standard definition, but not under the stronger 

definition. The structure 92 is not No-homogeneous, and not recursively satu- 

rated. The language of 92 is infinite. The other example is a superstable theory T, 

in an infinite language, such that T has only countably many types, and T has 

inhomogeneous models that are resplendent under the stronger definition. The 

theory T fails to satisfy either of the two conditions, Recursive Definability of 

Types, or Ubiquity of Indiscernibles. 
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§2. Lemmas on the two conditions 

The first lemma says that the Definability Condition extends to uncountable 

models. The proof is an obvious Downward L6wenheim-Skolem argument, 

which will be omitted. 

LEMMA 2.1. Suppose that T is a countable complete theory satisfying the 

Definability Condition. Let 93 be an uncountable recursively saturated model of T, 

with X C_ 93 and F E S×. Suppose that F is finitely satisfied in 93. Then F is 

determined by some e E to and c E 93. 

Next it will be shown that the Definability Condition implies superstability. 

LEMMA 2.2. Suppose that T satisfies Condition 1. Let 93 be an oJ-saturated 

model of T. Then if ~;[ = r, there are only K types over 93. Hence, T is necessarily 

superstable, and if T has only countable many types, then T is oJ-stable. 

PROOF. Each type over 93 is determined by some finite c E 93 and some 

eE~o.  

It is not clear whether Condition 1 implies Condition 2. Certainly, if F E S× 

and F is finitely satisfied in 93 but not actually realized in 93, there is a set of 

indiscernibles L is some "mons ter"  model of T, such that F = Av(/, X).  The 

content of Condition 2 is that I can be taken to be a subset of 93. 

Lemma 2.1 says that if Condition 1 holds for countable models, then it holds 

for uncountable models. Condition 2 also extends to uncountable models, but 

proving this requires more of an argument, and Condition 1 is assumed. 

LEMMA 2.3. Suppose that T is a countable complete theory satisfying Condi- 

tions 1 and 2 (for countable models). Let 93 be an uncountable recursively 

saturated model of T, and let F be a type over a set X C 93, where F is finitely 

satisfied in 93. If F is not realized in 93, then there is a set of indiscernibles I C_ 93 

such that F = Av(L X). 

PROOF. Assume there is no such set of indiscernibles. Take 930 to be a 

countable recursively saturated elementary substructure of 93 such that if 

Xo = X (3 930, then F I Xo is finitely satisfied on 93o. Then by Condition 2, there is 

a set of indiscernibles IoC_ 930 such that Av(Io, Xo)= F IXo. By assumption, 

Av(Io, X)  ~ F. Take some finite sequence yo E X witnessing this fact, and let 93~ 

be another countable recursively saturated model such that 930 < 93~ < 93, yo ~ 93~, 

and if Xz = X fh 93~, then F IXz is finitely satisfied in ~ .  As before, there is a set 

of indiscernibles I~ C 93~ such that Av(I1, X~)= F IX~, and there is some y~ E X 

such that Av(I~, y~) # F [ y~. 
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Continue choosing ~l~, X, ,  lo, and y~ for a <o~.  At limit stages, let 

93, = U ~ <~ ¢21[~. (Note that for X.  = X fq 9/~, the type F I X, is finitely satisfied in 

91a, provided that for each /3 < a, F TXo was finitely satisfied in ~l~.) By the 

Definability Condition, for each a < co~, there exist e, E to and co ~ ?1. deter- 

mining Av(I , ,  Pie). By Fodor 's  Theorem, there exist a fixed e and c that work for 

a stationary set of a ' s .  Now let ~/~, = U . . . .  .~l~. For each a E ~1~, and for all a 

from the stationary set, if a ~ 9Ja, then ~0'~ p~ .... '.'o= Av(L,  a). 

With a little further effort, it is possible to show that for a,/3 in the stationary 

set, if a </3, then Av(I~,~o)  = Av(I~,9.1o). Let a E°d0. For any formula ~o, it 

must be shown that q~ (a, v) ~ Av(I , ,  9.18 ) iff ~o (a, v) E A v(I~, Pie ). By stability, 

there is some n ~ w such that for any set of indiscernibles I in the monster 

model M, there cannot be I , , I2C L both of size n, such that for all i E I~, 

J / /~  q~ (a, i) and for all i E/2,  J//I = ~ ~0 (a, i). Suppose that q~ (a, v) ~ Av(l~, a ). 

Let i = ( i o , ' " , i , - ~ )  be a sequence of distinct elements of Io such that 

tp(ik, cni I k, ~1) is determined by e and c. Then take a sequence j = (/'k)k~ of 

distinct elements of I~ such that tp(/'k, enaninj  [ k, 91) is determined by e and c. 

Combine these to form the set of indiscernibles J = r a n / U r a n j .  Then 

~(a, v ) E  Av(J, a ) =  Av(Io, a). This proves that Av(I~, Ply)= Av(I~, ?l~), which 

is a contradiction, since it was assumed that A v ( I , , y o ) ~ / ' I y o ,  where y, 

PI,+, < 21~, but Av(I~, y~)= Frye .  Therefore,  there must be some infinite set of 

indiscernibles I C .~l such that Av(/, X ) =  F. 

§3. An Omitting Types Theorem, and the main result 

Next, it will be shown that the two conditions are sufficient for all resplendent 

models of T to be homogeneous. 

LEMMA 3.1. Suppose that T is a countable complete theory satisfying Condi- 
tions 1 and 2. If  ~d is an uncountable resplendent model of T, then ~l is 
homogeneous. (Of course, a countable resplendent model is always homogeneous, 
under the assumption that the language is finite.) 

PROOF. Let X C_ ~1, where ~ < ~.  Let F E S×, where F is finitely satisfied in 

.~1. It will be shown that F is realized in 9A. (By Lemmas 1.1 and 1.4, this is 

sufficient to prove homogeneity.)  If F is not realized in ~d, then F = Av(I, X)  for 

some infinite set I of indiscernibles in ~1. Moreover,  Av(/, X)  is determined by 

some x ~ ~.1 and some e E ~o. 

The model 9.1 will be expanded to a model of a certain r.e. theory, in a 

language with a new unary relation symbol J, a new binary relation symbol F, 

and constants for the finite sequence of elements e, in addition to the symbols 
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from the language of P[. This r.e. theory says that J is a set of indiscernibles (for 

the language of ~,[), F maps J one-one onto the universe, and for all finite 

sequences i ~ J and all j E J - i ,  tp(fi i,?1) is determined by e and c ; i . e . ,  for 

a(c, u) a finite set of formulas, if 

~7tc'")(7(u, v ) )=  I, then a(c,i)--~ y ( i , j )  holds, and if 

q~'t~'"~(y(u, v)) = 0, then a(c, i)---~ ~ y ( i , j )  holds. 

By Lemma 1.3, the fact that ,~( is resplendent means that it can be expanded to 

a model of this theory. Let the set of indiscernibles be called J (to match the 

symbol). Then Av(J, X)  = F. (If there is any doubt about this, see the part in the 

proof of Lemma 2.3 where it was shown that Av(L,  9(¢ ) = Av(I¢, 9[~ ), given that 

the same c and e determine Av(L,?[o)  and Av(Io, Ple).) 

The next lemma is an Omitting Types Theorem, where the types may have 

infinitely many parameters and the models are recursively saturated. 

LEMMA 3.2. Let 9[ be a countable recursively saturated structure. Let X C_ ~)(, 

and let F E S×. Let ~,V be a recursively saturated expansion of ?l, and suppose that 

F is not determined by any e and c in ~1'. Then for any r.e. theory T that is 

consistent with D~(P/'), there is a recursively saturated expansion ~[" of 9l' to a 

model of T such that F is not determined by any e and c in ~,I". 

PROOF. The usual method of expanding recursively saturated models is in 

stages, where at each stage, an r.e. set of sentences T(a)D_ T has been 

determined. Only finitely many constants a from 9V appear in T(a) ,  and the 

consequences of T(a)  in the language of ~[' with constants a added are satisfied 

in (~,1', a). 

Suppose that the construction has reached the stage where something must be 

done to make sure that F will not be determined in ~)l" by some particular e ~ oJ 

and sequence c. Consider finite sets of L (?[")-formulas a. The plan is to add to 

T(a)  one of the following, for some x ~ X and some L(~l)-formula ",/(u, v): 

(1) t~a(c , x ) ,  where ~'~"~(7(u, v ) )=  1, and y ( x , v ) ~ F ,  

(2)~ a(c ,x ) ,  where ~7~"'~(y(u, v)) = 0, and y(x, v ) E  F, 

(3) the set of all sentences ~ ax a ( c , x )  such that ~oT~'"~(y(u, v)) converges. 

Then y(x, v ) E  F and ~o~ rt .... ~'"~(y(x, v)) = 1, or y(x,  v) E F and 

¢T  ~ .... ~"~(7(x,v))=O, or ~T ~ .... 'r'~(y(x,v)) is undefined. The proof that it is 

possible to add something of one of the three forms above is by contradiction. It 

will be shown that if nothing like this can be added, then F is already determined 

in ,~l' by a~c and some e '@w.  The recursive procedure with index e'  will be 

described in terms of proofs in an infinite language (the use of the infinite 

language is not essential). 



Vol. 42, 1 9 8 2  HOMOGENEITY OF RESPLENDENT MODELS 157 

For each L(P[)-formula 7(u, v), let R~ be a new relation symbol, with places 

for the variables u. Let A(c ,x)  be the set of all sentences of the forms 

/~ a(e,x)---~ R~(x),  where ~',:'c"'(y(u, v))--- 1, and ~ a(c, x)---~ ~ R~(x),  where 

~p~'cc'"~(7(u, v)) = 0. Then F is determined in the following way: for each x E X, 

each L(,°l)-formula 7(u ,v ) ,  look at the list of theorems proved from 

tp(anc~x,? l ' )U T ( a ) U A ( c , x ) .  If R~(x)  appears first, then 7 ( x , v ) C F ,  and if 

R~ (x) appears first, then 3'(x, v ) ~ F. This shows that it is possible to carry out 

the steps in the construction so that F will not be determined in 9[". 

The next lemma is really the second half of the main result. 

LEMMA 3.3. Let a > ~,,, and suppose that T is a theory whose resplendent 

models of power A are all homogeneous. Then T satisfies Conditions 1 and 2. 

PROOF. Let ?[ be a countable recursively saturated model, with X_CP[, 

F E Sx, where F is finitely satisfied in ?l. If ?l < ~ where ~ is a resplendent model 

of power A, then F will be realized in ~ (by homogeneity). Using a technique of 

Schmerl, it can be shown that if Condition 1 fails, then there is a resplendent 

model ~ of power A such that ?[ < ~ and ~ omits F. 

Schmerl proved that if ?[ is a countable recursively saturated structure, then 

for any infinite cardinal A, there is a resplendent model ~. of power A such that 

52-=~ ?[. (See [1] or [2] for the proof.) A slight modification of Schmerl's 

construction is needed to produce the model ~ that omits F, so the construction 

will be outlined here. 

The first step is to expand ?[ to a recursively saturated model ?1o of first order  

Peano arithmetic. Then the structure is expanded to further recursively satu- 

rated models witnessing the resplendence of ?I. Let ?[, be the result of the first n 

expansions, and let ?l* be the result of adding everything. Each ~l, is recursively 

saturated, but ?[* is not. By Lemma 3.2, the structures ?l, can be chosen such 

that F is not determined by any e and c in ~l,. 

The next step is to form a nested sequence of infinite sets (P~)~ ,  such that 

each P, is a unary predicate from ?!*. These sets serve as approximations to a 

special kind of set of indiscernibles that will generate the resplendent models of 

arbitrary cardinality. The P~'s have the following properties: 

A. For each L(?l*)-term r (u) ,  there is some k such that for all L(?/)-formulas 

q~, all increasing sequences a, b ~ Pk, ~I* ~ ~ ( ~ ' ( a ) ~  ,~(~'(b)). 

B. For each L (?l*) U {R }-formula 0 (u, R ), there is some k such that either (a) 

there is an L(21*)-formula o-(u) such that O(u, R)I - t r (u )  and for all increasing 

sequences a ~ P~, 9l* ~ - tr(a),  or else (b) there is some R in ~l* such that for all 

increasing sequences a @ Pk, if R. = {y : (a, y ) E  R}, then ~I* ~ O(a, R.) .  
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C. For each L (~*)-term ~-(u), there is some k such that for some ,/(x, v ) E  F, 

for all increasing sequences a E Pk, 92* ~ ~ ",/(x, z (a)) .  

Properties A and B are the same as in Schmerl's construction. Property C has 

been added to keep the large resplendent models from realizing the type F. 

Suppose that Pk has been determined, and it is time to find Pk+~ satisfying 

Property C for some ~-(u). If the desired Pk+~ did. not exist, then it would be 

possible to test whether a formula ,/(x, v) is in F by the following prodecure: 

Take the first n such that there do not exist sets S~, $2 of size n such that 

Si U S z C  P~,, for all increasing sequences a E S~, 92*~,y(x , . r (a)) ,  and for all 

increasing sequences a ES2 ,  2I*1=-~/(x , , r (a)) .  If there is no such S~, then 

" y ( x , v ) E F ,  and if there is no such $2, then 3 , (x ,v)EF.  This means that F is 

determined by the constants c and an appropriate e E co, in any 92, containing 

the relations used in building up ~- and P~. This is a contradiction. Therefore, the 

desired Pk+~ exists. 

Let ~3 be a model of DC(92 3) with a set I of size )t such that for any 

L(923)-formula q~(u), if there is some Pk such that 9231 = ~o(a) for all increasing 

sequences a ~ P~, then 92* ~ q~(i) for all increasing sequences i ~ L Let £3 be 

the Skolem hull of I in if*, and let £ be the L(92)-reduct of £3. Then £ is 

resplendent, and it may be assumed that 92 < £. Property C guarantees that £ 

omits F. This completes the proof that T satisfies the Definability Condition. 

Now, it will be shown that if all resplendent models of T are homogeneous, 

then T satisfies the condition on Ubiquity of Indiscernibles. Let 92 be a 

countable recursively saturated model of T, with X C 92 and F E Sx, and suppose 

that F is finitely satisfied in 92. It must be shown that if F is not realized in 92, then 

F is the average type over X of some set of indiscernibles in 92. Schmerl's 

construction is used to obtain the set of indiscernibles. 

In the construction, the sequence of sets (Pk)k~, is chosen to satisfy Properties 

A and B, as before, but Property C is replaced by the following: 

C'. For each n Eto, there is some k such that Pk is a set of L(92,)- 

indiscernibles. 

Again the set I is taken to have power A and to satisfy the types determined 

by the sequence (P~)k~,~. If £* is the Skolem hull o f / ,  and £ is the L (9~)-reduct of 

£*, then £ is resplendent, and it may be assumed that 92 < £. Since £ is 

homogeneous, and the type F is finitely satisfied in £, £ must realize F. Say "r~'(i) 

realizes F, where r is an L(92,)-term, and i is a sequence from I of length r. 

Condition C' says that some Pk is a set of L (92.)-indiscernibles. Form an infinite 

sequence of finite sequences (a~)s~, where each a~ is an increasing sequence of 
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length r in Pkt3Pj and sup(aj)<inf(aj+,),  for each j e w .  For r = 3 ,  the 

arrangement looks like this: 
. . . . . . . . . . . . . . . . . . . . . . . . .  , . 

ao al  a2 a3 a4 a5 

If F is not realized in 9.1, then ~" is not constant on the aj's. In fact, the set 

{z~'(aj) : j E to} is a set of L(21)-indiscernibles whose average type over X is F, 

since for any x ~ X, there is some j such that for all increasing sequences a E Pj, 

tp (~'a'(a), x, 9.1) = tp (r~'(i), x, ~) = F I x. Therefore, the condition on Ubiquity of 

Indiscernibles is satisfied. 
Here is the main result. 

THEOREM 3.4. Let T be a countable complete theory. Then the following are 

equivalent: 

(a) T satisfies Conditions (1) and (2), 

(b) all resplendent models of T are homogeneous, 

(c) all resplendent models of T in some uncountable power h are homogeneous. 

PROOF. By Lemma 3.1, (a) implies (b). Obviously, (b) implies (c). Finally, by 

Lemma 3.3, (c) implies (a). 

§4. Infinite languages 

Let ~ be a fixed universal language, with infinitely many constants, and 

infinitely many m-placed relation and function symbols for each m. Assume, 

moreover, that the relations "s is the kth constant," "s is the kth m-placed 

relation symbol," and "s is the kth m-placed function symbol" are all recursive. 

Consider structures 21 whose language is a recursive, but possibly infinite, subset 
of L¢. The following definition of resplendence seems appropriate for these 

structures: 21 is resplendent if for any r.e. theory T, in a language with finitely 
many new symbols in addition to those of the language of 21, if T is consistent 
with D C(21), then 21 can be expanded to a model of T. This "fixed-language" 
approach was suggested to the author by Baldwin, Biass, and Lachlan. 

If this definition is adopted, then resplendent structures will be recursively 

saturated and no-homogeneous. Schmerl's theorem holds; that is, if 9~ is a 

countable recursively saturated structure, whose language is a recursive subset of 

L~, then for each K > No, there is some ~2 of power K such that ~---~o 21 and 

satisfies the stronger definition of resplendence. The theories T (whose language 

is a recursive subset of L¢) with no inhomogeneous models that satisfy this 

definition of resplendence are characterized by Conditions 1 and 2 of this paper. 
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The following structure is resplendent by the standard definition, but is not 

No-homogeneous or recursively saturated. Let ~ be a countable structure with an 

equivalence relation that splits the universe into two infinite parts, and with a 

nested family of unary relations U~ ~, for n ~to,  such that Uo ~=~l[, and 

U~ ~ - U~+I contains infinitely many elements from each of the two equivalence 

classes. Let the intersection of the U~Z's be non-empty and lie entirely in one 

equivalence class. The structure 9~ satisfies the standard definition of resplen- 

dence, since each reduct to a finite language is saturated. However,  there is no 

automorphism that moves an element from one equivalence class to the other, 

even though the elements of U~ f - U~+~ all satisfy the same 1-type. This structure 

can certainly be thought of as satisfying the language requirement above. It does 

not satisfy the stronger definition of resplendence. 

The next example is a theory that is superstable but does not satisfy either 

Condition 1 or Condition 2. The example was developed in the course of a 

conversation with Buechler, Kaufmann, and Kueker. Let 9 3 o = ( 2 < ' , - , ) , ~ ,  

where for or, ~" ~ 2 <', cr - ,  r iff o" r n = z r n. Let T = Th(9.10). It is not difficult to 

verify that T is superstable and that all countable recursively saturated models of 

T are isomorphic. The Definability Condition must fail, since T is not to-stable 

but has only countably many types. 

If ~[ is a model of T, there is a natural equivalence relation on ~ given by the 

'~ b, for all n E to. The condition following condition: For a, b ~ 91, a - ~ b  iff a - ,  

on Ubiquity of Indiscernibles must fail because any infinite set of indiscernibles 

must lie entirely in one -~-class.  If ~ is a countable recursively saturated model, 

then there is some type F E S~ such that F is finitely satisfied in 91 but F is not the 

average type of a set of indiscernibles in any ~,o-class represented in ~.  

The language of T is infinite, but it can be thought of as satisfying the 

requirement above. There are uncountable models of T which are inhomogene- 

ous but satisfy the stronger definition of resplendence. Specifically, Schmerl's 

construction, with a set of indiscernibles of order type to~, yields a model 9~ of 

power 1~, that is resplendent in the strong sense and has only M0~-classes.  The 

model ~ has a countable recursively saturated elementary submodel E with 

representatives from all ~,-classes  in 9~. There is an elementary embedding f of 

properly into itself, and f cannot be extended to an automorphism of 9~. 
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